Cargando…
The “needle re-entry” technique for infrainguinal arterial calcified occlusive lesions
BACKGROUND: Vascular calcification is a predictor of poor clinical outcome during and after endovascular intervention. Guidewire crossing techniques and devices have been developed, but chronic total occlusions (CTOs) with severe calcification often prevent subintimal re-entry. We propose a novel gu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665915/ https://www.ncbi.nlm.nih.gov/pubmed/34894315 http://dx.doi.org/10.1186/s42155-021-00274-y |
Sumario: | BACKGROUND: Vascular calcification is a predictor of poor clinical outcome during and after endovascular intervention. Guidewire crossing techniques and devices have been developed, but chronic total occlusions (CTOs) with severe calcification often prevent subintimal re-entry. We propose a novel guidewire crossing approach combined needle rendezvous with balloon snare technique, named the “needle re-entry” technique, for treatment of complex occlusive lesions. MAIN TEXT: A 73-year-old female with severe claudication in her right calf with ankle brachial index of 0.62, and a computed tomography angiogram showed a long occlusion with diffuse calcification in superficial femoral artery. She was referred to our department to have peripheral interventions. Since the calcified vascular wall of the lesion prevented the successful re-entry, the “needle re-entry” was performed. First, a retrograde puncture of the SFA, distally to the occlusion, was performed and an 0.018-in. guidewire with a microcatheter was inserted to establish a retrograde fashion. Second, an antegrade 5.0-mm balloon was advanced into a subintimal plane and balloon dilation at 6 atm was maintained. Third, an 18-gauge needle was antegradely inserted from distal thigh to the dilated 5.0-mm balloon. After confirming a balloon rupture by the needle penetration, we continued to insert the needle to meet the retrograde guidewire tip. Then, a retrograde 0.014-in. guidewire was carefully advanced into the needle hole, named the “needle rendezvous” technique. After further guidewire advancement to accomplish a guidewire externalization, the needle was removed. Finally, since the guidewire was passing through the 5.0-mm ruptured balloon, the balloon was withdrawn, and the guidewire was caught with the balloon and successfully advanced into the antegrade subintimal space, named the “balloon snare” technique. After the guidewire was advanced into the antegrade guiding sheath and achieved a guidewire externalization, an endovascular stent graft and an interwoven stent were deployed to cover the lesion. After postballoon dilation, an angiography showed a satisfactory result without complications. No restenosis, reintervention, and limb loss have been observed for one year follow-up period after this technique. CONCLUSIONS: The “needle re-entry” technique is a useful guidewire crossing technique to revascularize femoropopliteal complex CTOs with severe calcification which prevent the achievement of guidewire crossing with the conventional procedures. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42155-021-00274-y. |
---|