Cargando…
Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress
Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with differe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Plant Pathology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666243/ https://www.ncbi.nlm.nih.gov/pubmed/34897257 http://dx.doi.org/10.5423/PPJ.FT.10.2021.0156 |
_version_ | 1784614165695954944 |
---|---|
author | Lee, Shin Ae Kim, Hyeon Su Sang, Mee Kyung Song, Jaekyeong Weon, Hang-Yeon |
author_facet | Lee, Shin Ae Kim, Hyeon Su Sang, Mee Kyung Song, Jaekyeong Weon, Hang-Yeon |
author_sort | Lee, Shin Ae |
collection | PubMed |
description | Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes. |
format | Online Article Text |
id | pubmed-8666243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Korean Society of Plant Pathology |
record_format | MEDLINE/PubMed |
spelling | pubmed-86662432021-12-23 Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress Lee, Shin Ae Kim, Hyeon Su Sang, Mee Kyung Song, Jaekyeong Weon, Hang-Yeon Plant Pathol J Research Article Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes. Korean Society of Plant Pathology 2021-12 2021-12-01 /pmc/articles/PMC8666243/ /pubmed/34897257 http://dx.doi.org/10.5423/PPJ.FT.10.2021.0156 Text en © The Korean Society of Plant Pathology https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lee, Shin Ae Kim, Hyeon Su Sang, Mee Kyung Song, Jaekyeong Weon, Hang-Yeon Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title | Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_full | Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_fullStr | Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_full_unstemmed | Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_short | Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_sort | effect of bacillus mesonae h20-5 treatment on rhizospheric bacterial community of tomato plants under salinity stress |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666243/ https://www.ncbi.nlm.nih.gov/pubmed/34897257 http://dx.doi.org/10.5423/PPJ.FT.10.2021.0156 |
work_keys_str_mv | AT leeshinae effectofbacillusmesonaeh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT kimhyeonsu effectofbacillusmesonaeh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT sangmeekyung effectofbacillusmesonaeh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT songjaekyeong effectofbacillusmesonaeh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT weonhangyeon effectofbacillusmesonaeh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress |