Cargando…
Machine Learning Model Developed to Aid in Patient Selection for Outpatient Total Joint Arthroplasty
BACKGROUND: Patient selection for outpatient total joint arthroplasty (TJA) is important for optimizing patient outcomes. This study develops machine learning models that may aid in patient selection for outpatient TJA based on medical comorbidities and demographic factors. METHODS: This study queri...
Autores principales: | Lopez, Cesar D., Ding, Jessica, Trofa, David P., Cooper, H. John, Geller, Jeffrey A., Hickernell, Thomas R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666332/ https://www.ncbi.nlm.nih.gov/pubmed/34917716 http://dx.doi.org/10.1016/j.artd.2021.11.001 |
Ejemplares similares
-
Tranexamic acid increases early perioperative functional outcomes after total knee arthroplasty
por: Grosso, Matthew J., et al.
Publicado: (2017) -
Opioid Prescription Consumption Patterns After Total Joint Arthroplasty in Chronic Opioid Users Versus Opioid Naive Patients
por: Kaidi, Austin C., et al.
Publicado: (2020) -
Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review
por: Lopez, Cesar D., et al.
Publicado: (2021) -
Hospital and Surgeon Medicare Reimbursement Trends for Total Joint Arthroplasty
por: Lopez, Cesar D., et al.
Publicado: (2020) -
Decreased risk of knee buckling with adductor canal block versus femoral nerve block in total knee arthroplasty: a retrospective cohort study
por: Thacher, Ryan R., et al.
Publicado: (2017)