Cargando…
Detection and Segmentation of Pelvic Bones Metastases in MRI Images for Patients With Prostate Cancer Based on Deep Learning
OBJECTIVE: To establish and evaluate the 3D U-Net model for automated segmentation and detection of pelvic bone metastases in patients with prostate cancer (PCa) using diffusion-weighted imaging (DWI) and T1 weighted imaging (T1WI) images. METHODS: The model consisted of two 3D U-Net algorithms. A t...
Autores principales: | Liu, Xiang, Han, Chao, Cui, Yingpu, Xie, Tingting, Zhang, Xiaodong, Wang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666439/ https://www.ncbi.nlm.nih.gov/pubmed/34912716 http://dx.doi.org/10.3389/fonc.2021.773299 |
Ejemplares similares
-
Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
por: Liu, Xiang, et al.
Publicado: (2021) -
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images
por: Liu, Xiang, et al.
Publicado: (2021) -
Patterns of Bone Failure in Localized Prostate Cancer Previously Irradiated: The Preventive Role of External Radiotherapy on Pelvic Bone Metastases
por: Grapin, Mathieu, et al.
Publicado: (2019) -
Deep Learning Enables Prostate MRI Segmentation: A Large Cohort Evaluation With Inter-Rater Variability Analysis
por: Liu, Yongkai, et al.
Publicado: (2021) -
Fully automating LI-RADS on MRI with deep learning-guided lesion segmentation, feature characterization, and score inference
por: Wang, Ke, et al.
Publicado: (2023)