Cargando…
Automated Machine Learning Model Development for Intracranial Aneurysm Treatment Outcome Prediction: A Feasibility Study
Background: The prediction of aneurysm treatment outcomes can help to optimize the treatment strategies. Machine learning (ML) has shown positive results in many clinical areas. However, the development of such models requires expertise in ML, which is not an easy task for surgeons. Objectives: The...
Autores principales: | Ou, Chubin, Liu, Jiahui, Qian, Yi, Chong, Winston, Liu, Dangqi, He, Xuying, Zhang, Xin, Duan, Chuan-Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666475/ https://www.ncbi.nlm.nih.gov/pubmed/34912282 http://dx.doi.org/10.3389/fneur.2021.735142 |
Ejemplares similares
-
Rupture Risk Assessment for Cerebral Aneurysm Using Interpretable Machine Learning on Multidimensional Data
por: Ou, Chubin, et al.
Publicado: (2020) -
Elevated Lipid Infiltration Is Associated With Cerebral Aneurysm Rupture
por: Ou, Chubin, et al.
Publicado: (2020) -
Commentary: Automated Machine Learning Model Development for Intracranial Aneurysm Treatment Outcome Prediction: A Feasibility Study
por: Huber, Markus, et al.
Publicado: (2022) -
Erratum: Commentary: Automated machine learning model development for intracranial aneurysm treatment outcome prediction: A feasibility study
Publicado: (2023) -
Prediction and analysis of periprocedural complications associated with endovascular treatment for unruptured intracranial aneurysms using machine learning
por: Tian, Zhongbin, et al.
Publicado: (2022)