Cargando…

Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members

In nature, bacteria frequently reside in differentiated communities or biofilms. These multicellular communities are held together by self-produced polymers that allow the community members to adhere to the surface as well as to neighbor bacteria. Here, we report that exopolysaccharides prevent Baci...

Descripción completa

Detalles Bibliográficos
Autores principales: Maan, Harsh, Povolotsky, Tatyana L., Porat, Ziv, Itkin, Maxim, Malitsky, Sergey, Kolodkin-Gal, Ilana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666610/
https://www.ncbi.nlm.nih.gov/pubmed/34976308
http://dx.doi.org/10.1016/j.csbj.2021.11.043
_version_ 1784614245960253440
author Maan, Harsh
Povolotsky, Tatyana L.
Porat, Ziv
Itkin, Maxim
Malitsky, Sergey
Kolodkin-Gal, Ilana
author_facet Maan, Harsh
Povolotsky, Tatyana L.
Porat, Ziv
Itkin, Maxim
Malitsky, Sergey
Kolodkin-Gal, Ilana
author_sort Maan, Harsh
collection PubMed
description In nature, bacteria frequently reside in differentiated communities or biofilms. These multicellular communities are held together by self-produced polymers that allow the community members to adhere to the surface as well as to neighbor bacteria. Here, we report that exopolysaccharides prevent Bacillus subtilis from co-aggregating with a distantly related bacterium Bacillus mycoides, while maintaining their role in promoting self-adhesion and co-adhesion with phylogenetically related bacterium, Bacillus atrophaeus. The defensive role of the exopolysaccharides is due to the specific regulation of bacillaene. Single cell analysis of biofilm and free-living bacterial cells using imaging flow cytometry confirmed a specific role for the exopolysaccharides in microbial competition repelling B. mycoides. Unlike exopolysaccharides, the matrix protein TasA induced bacillaene but inhibited the expression of the biosynthetic clusters for surfactin, and therefore its overall effect on microbial competition during floating biofilm formation was neutral. Thus, the exopolysaccharides provide a dual fitness advantage for biofilm-forming cells, as it acts to promote co-aggregation of related species, as well as, a secreted cue for chemical interference with non-compatible partners. These results experimentally demonstrate a general assembly principle of complex communities and provides an appealing explanation for how closely related species are favored during community assembly. Furthermore, the differential regulation of surfactin and bacillaene by the extracellular matrix may explain the spatio-temporal gradients of antibiotic production within biofilms.
format Online
Article
Text
id pubmed-8666610
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-86666102021-12-30 Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members Maan, Harsh Povolotsky, Tatyana L. Porat, Ziv Itkin, Maxim Malitsky, Sergey Kolodkin-Gal, Ilana Comput Struct Biotechnol J Research Article In nature, bacteria frequently reside in differentiated communities or biofilms. These multicellular communities are held together by self-produced polymers that allow the community members to adhere to the surface as well as to neighbor bacteria. Here, we report that exopolysaccharides prevent Bacillus subtilis from co-aggregating with a distantly related bacterium Bacillus mycoides, while maintaining their role in promoting self-adhesion and co-adhesion with phylogenetically related bacterium, Bacillus atrophaeus. The defensive role of the exopolysaccharides is due to the specific regulation of bacillaene. Single cell analysis of biofilm and free-living bacterial cells using imaging flow cytometry confirmed a specific role for the exopolysaccharides in microbial competition repelling B. mycoides. Unlike exopolysaccharides, the matrix protein TasA induced bacillaene but inhibited the expression of the biosynthetic clusters for surfactin, and therefore its overall effect on microbial competition during floating biofilm formation was neutral. Thus, the exopolysaccharides provide a dual fitness advantage for biofilm-forming cells, as it acts to promote co-aggregation of related species, as well as, a secreted cue for chemical interference with non-compatible partners. These results experimentally demonstrate a general assembly principle of complex communities and provides an appealing explanation for how closely related species are favored during community assembly. Furthermore, the differential regulation of surfactin and bacillaene by the extracellular matrix may explain the spatio-temporal gradients of antibiotic production within biofilms. Research Network of Computational and Structural Biotechnology 2021-12-04 /pmc/articles/PMC8666610/ /pubmed/34976308 http://dx.doi.org/10.1016/j.csbj.2021.11.043 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Maan, Harsh
Povolotsky, Tatyana L.
Porat, Ziv
Itkin, Maxim
Malitsky, Sergey
Kolodkin-Gal, Ilana
Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members
title Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members
title_full Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members
title_fullStr Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members
title_full_unstemmed Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members
title_short Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members
title_sort imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: to promote self-adhesion while repelling non-self-community members
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666610/
https://www.ncbi.nlm.nih.gov/pubmed/34976308
http://dx.doi.org/10.1016/j.csbj.2021.11.043
work_keys_str_mv AT maanharsh imagingflowcytometryrevealsadualroleforexopolysaccharidesinbiofilmstopromoteselfadhesionwhilerepellingnonselfcommunitymembers
AT povolotskytatyanal imagingflowcytometryrevealsadualroleforexopolysaccharidesinbiofilmstopromoteselfadhesionwhilerepellingnonselfcommunitymembers
AT poratziv imagingflowcytometryrevealsadualroleforexopolysaccharidesinbiofilmstopromoteselfadhesionwhilerepellingnonselfcommunitymembers
AT itkinmaxim imagingflowcytometryrevealsadualroleforexopolysaccharidesinbiofilmstopromoteselfadhesionwhilerepellingnonselfcommunitymembers
AT malitskysergey imagingflowcytometryrevealsadualroleforexopolysaccharidesinbiofilmstopromoteselfadhesionwhilerepellingnonselfcommunitymembers
AT kolodkingalilana imagingflowcytometryrevealsadualroleforexopolysaccharidesinbiofilmstopromoteselfadhesionwhilerepellingnonselfcommunitymembers