Cargando…
The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats
INTRODUCTION: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of Unfolded Protein Response (UPR) under oxidative stress is a steady mechanis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Iranian Neuroscience Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666922/ https://www.ncbi.nlm.nih.gov/pubmed/34917296 http://dx.doi.org/10.32598/bcn.2021.2250.1 |
_version_ | 1784614297036390400 |
---|---|
author | Esfandiarifar, Ali Azarbayjani, Mohammad Ali Peeri, Maghsood Jameie, Seyed Behnamedin |
author_facet | Esfandiarifar, Ali Azarbayjani, Mohammad Ali Peeri, Maghsood Jameie, Seyed Behnamedin |
author_sort | Esfandiarifar, Ali |
collection | PubMed |
description | INTRODUCTION: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of Unfolded Protein Response (UPR) under oxidative stress is a steady mechanism for maintaining cell function and survival. Therefore, the present study aimed to review the effect of Resistance Training (RT) and Berberine Chloride (BC) on the apoptosis-related UPR signaling pathway in the hippocampus of diazinon-poisoned rats. METHODS: In this experimental study, 40 male Wistar rats weighing 250 ±50 g were randomly divided into eight groups of five rats of 1) diazinon + 2 mg/kg BC + RT, 2) diazinon + 15 mg/kg BC + RT, 3) diazinon, 4) diazinon + RT, 5) diazinon + 2 mg/kg BC, 6) diazinon + 15 mg/kg BC, 7) healthy control, and 8) sham. The groups were treated for 5 weeks. At the end of the fifth week, ATF-4, ATF-6, and CHOP gene expression in hippocampus tissue were measured by quantitative real-time RT-PCR. RESULTS: Diazinon significantly increased the expression of ATF-4, ATF-6, and CHOP in the hippocampus tissue of rats. Administrating 15 mg/kg BC with RT significantly decreased these genes, indicating a decrease in the rate of apoptosis in the hippocampus. CONCLUSION: This study showed that RT and BC have a protective effect against diazinon-induced toxicity in the hippocampus. |
format | Online Article Text |
id | pubmed-8666922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Iranian Neuroscience Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-86669222021-12-15 The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats Esfandiarifar, Ali Azarbayjani, Mohammad Ali Peeri, Maghsood Jameie, Seyed Behnamedin Basic Clin Neurosci Research Paper INTRODUCTION: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of Unfolded Protein Response (UPR) under oxidative stress is a steady mechanism for maintaining cell function and survival. Therefore, the present study aimed to review the effect of Resistance Training (RT) and Berberine Chloride (BC) on the apoptosis-related UPR signaling pathway in the hippocampus of diazinon-poisoned rats. METHODS: In this experimental study, 40 male Wistar rats weighing 250 ±50 g were randomly divided into eight groups of five rats of 1) diazinon + 2 mg/kg BC + RT, 2) diazinon + 15 mg/kg BC + RT, 3) diazinon, 4) diazinon + RT, 5) diazinon + 2 mg/kg BC, 6) diazinon + 15 mg/kg BC, 7) healthy control, and 8) sham. The groups were treated for 5 weeks. At the end of the fifth week, ATF-4, ATF-6, and CHOP gene expression in hippocampus tissue were measured by quantitative real-time RT-PCR. RESULTS: Diazinon significantly increased the expression of ATF-4, ATF-6, and CHOP in the hippocampus tissue of rats. Administrating 15 mg/kg BC with RT significantly decreased these genes, indicating a decrease in the rate of apoptosis in the hippocampus. CONCLUSION: This study showed that RT and BC have a protective effect against diazinon-induced toxicity in the hippocampus. Iranian Neuroscience Society 2021 2021-05-01 /pmc/articles/PMC8666922/ /pubmed/34917296 http://dx.doi.org/10.32598/bcn.2021.2250.1 Text en Copyright© 2021 Iranian Neuroscience Society https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) |
spellingShingle | Research Paper Esfandiarifar, Ali Azarbayjani, Mohammad Ali Peeri, Maghsood Jameie, Seyed Behnamedin The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats |
title | The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats |
title_full | The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats |
title_fullStr | The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats |
title_full_unstemmed | The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats |
title_short | The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats |
title_sort | effect of resistance training and berberine chloride on the apoptosis-related unfolded protein response signaling pathway in the hippocampus of diazinon-poisoned rats |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666922/ https://www.ncbi.nlm.nih.gov/pubmed/34917296 http://dx.doi.org/10.32598/bcn.2021.2250.1 |
work_keys_str_mv | AT esfandiarifarali theeffectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats AT azarbayjanimohammadali theeffectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats AT peerimaghsood theeffectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats AT jameieseyedbehnamedin theeffectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats AT esfandiarifarali effectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats AT azarbayjanimohammadali effectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats AT peerimaghsood effectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats AT jameieseyedbehnamedin effectofresistancetrainingandberberinechlorideontheapoptosisrelatedunfoldedproteinresponsesignalingpathwayinthehippocampusofdiazinonpoisonedrats |