Cargando…
A Systematic Review on Model Watermarking for Neural Networks
Machine learning (ML) models are applied in an increasing variety of domains. The availability of large amounts of data and computational resources encourages the development of ever more complex and valuable models. These models are considered the intellectual property of the legitimate parties who...
Autor principal: | Boenisch, Franziska |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667341/ https://www.ncbi.nlm.nih.gov/pubmed/34913032 http://dx.doi.org/10.3389/fdata.2021.729663 |
Ejemplares similares
-
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
Deep Neural Networks for Optimal Team Composition
por: Sapienza, Anna, et al.
Publicado: (2019) -
Structural Compression of Convolutional Neural Networks with Applications in Interpretability
por: Abbasi-Asl, Reza, et al.
Publicado: (2021) -
Graph Neural Networks for Charged Particle Tracking on FPGAs
por: Elabd, Abdelrahman, et al.
Publicado: (2022) -
Integrating geometries of ReLU feedforward neural networks
por: Liu, Yajing, et al.
Publicado: (2023)