Cargando…
JLAN: medical code prediction via joint learning attention networks and denoising mechanism
BACKGROUND: Clinical notes are documents that contain detailed information about the health status of patients. Medical codes generally accompany them. However, the manual diagnosis is costly and error-prone. Moreover, large datasets in clinical diagnosis are susceptible to noise labels because of e...
Autores principales: | Li, Xingwang, Zhang, Yijia, Islam, Faiz ul, Dong, Deshi, Wei, Hao, Lu, Mingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667397/ https://www.ncbi.nlm.nih.gov/pubmed/34903164 http://dx.doi.org/10.1186/s12859-021-04520-x |
Ejemplares similares
-
RDASNet: Image Denoising via a Residual Dense Attention Similarity Network
por: Tao, Haowu, et al.
Publicado: (2023) -
Medical code prediction via capsule networks and ICD knowledge
por: Bao, Weidong, et al.
Publicado: (2021) -
High-contrast scleroconjunctival microvasculature via deep learning denoising
por: Kadomoto, Shin, et al.
Publicado: (2020) -
A Novel Error Detection due to Joint CRC Aided Denoise-and-Forward Network Coding for Two-Way Relay Channels
por: Cheng, Yulun, et al.
Publicado: (2014) -
A Review of Denoising Medical Images Using Machine Learning
Approaches
por: Kaur, Prabhpreet, et al.
Publicado: (2018)