Cargando…
When first line treatment of neonatal infection is not enough: blood culture and resistance patterns in neonates requiring second line antibiotic therapy in Bangui, Central African Republic
BACKGROUND: Infectious diseases account for the third most common cause of neonatal deaths. Globally, antibiotic resistance (ABR) has been increasingly challenging neonatal sepsis treatment, with 26 to 84% of gram-negative bacteria resistant to third-generation cephalosporins. In sub-Saharan Africa,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667452/ https://www.ncbi.nlm.nih.gov/pubmed/34903185 http://dx.doi.org/10.1186/s12887-021-02911-w |
Sumario: | BACKGROUND: Infectious diseases account for the third most common cause of neonatal deaths. Globally, antibiotic resistance (ABR) has been increasingly challenging neonatal sepsis treatment, with 26 to 84% of gram-negative bacteria resistant to third-generation cephalosporins. In sub-Saharan Africa, limited evidence is available regarding the neonatal microbiology and ABR. To our knowledge, no studies have assessed neonatal bacterial infections and ABR in Central-African Republic (CAR). Therefore, this study aimed to describe the pathogens isolated and their specific ABR among patients with suspected antibiotic-resistant neonatal infection admitted in a CAR neonatal unit. METHODS: This retrospective cohort study included neonates admitted in the neonatal unit in Bangui, CAR, from December 2018 to March 2020, with suspected antibiotic-resistant neonatal infection and subsequent blood culture. We described the frequency of pathogens isolated from blood cultures, their ABR prevalence, and factors associated with fatal outcome. RESULTS: Blood cultures were positive in 33 (26.6%) of 124 patients tested (17.9% for early-onset and 46.3% for late-onset infection; p = 0.002). Gram-negative bacteria were isolated in 87.9% of positive samples; with most frequently isolated bacteria being Klebsiella pneumoniae (39.4%), Escherichia coli (21.2%) and Klebsiella oxytoca (18.2%). All tested bacteria were resistant to ampicillin. Resistance to third-generation cephalosporins was observed in 100% of tested Klebsiella pneumoniae, 83.3% of isolated Klebsiella oxytoca and 50.0% of tested Escherichia coli. None of the tested bacteria were resistant to carbapenems. Approximately 85.7 and 77.8% of gram-negative tested bacteria were resistant to first-line (ampicillin-gentamicin) and second-line (third-generation cephalosporins) treatments, respectively. In hospital mortality, adjusted for blood culture result, presence of asphyxia, birth weight and sex was higher among neonates with positive blood culture (adjusted relative risk [aRR] = 2.32; 95% confidence interval [CI] = 1.17–4.60), male sex (aRR = 2.07; 95% CI = 1.01–4.26), asphyxia (aRR = 2.42; 95% CI = 1.07–5.47) and very low birth weight (1000–1499 g) (aRR = 2.74; 95% CI = 1.3–5.79). CONCLUSION: Overall, 77.8% of confirmed gram-negative neonatal infections could no longer effectively be treated without broad-spectrum antibiotics that are not routinely used in sub-Saharan Africa referral hospitals. Carbapenems should be considered an option in hospitals with surveillance and antibiotic stewardship. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12887-021-02911-w. |
---|