Cargando…
CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation
Clustering of joint single-cell RNA-Seq (scRNA-Seq) data is often challenged by confounding factors, such as batch effects and biologically relevant variability. Existing batch effect removal methods typically require strong assumptions on the composition of cell populations being near identical acr...
Autores principales: | Hu, Zhiyuan, Ahmed, Ahmed A., Yau, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667531/ https://www.ncbi.nlm.nih.gov/pubmed/34903266 http://dx.doi.org/10.1186/s13059-021-02561-2 |
Ejemplares similares
-
SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data
por: Ren, Xianwen, et al.
Publicado: (2019) -
seqMINER: an integrated ChIP-seq data interpretation platform
por: Ye, Tao, et al.
Publicado: (2011) -
One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data
por: Wang, Chloe X., et al.
Publicado: (2022) -
scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data
por: Wang, Zongqin, et al.
Publicado: (2023) -
An interpretable framework for clustering single-cell RNA-Seq datasets
por: Zhang, Jesse M., et al.
Publicado: (2018)