Cargando…
Exploring Pathway-Based Group Lasso for Cancer Survival Analysis: A Special Case of Multi-Task Learning
Motivation: The Cox proportional hazard models are widely used in the study of cancer survival. However, these models often meet challenges such as the large number of features and small sample sizes of cancer data sets. While this issue can be partially solved by applying regularization techniques...
Autores principales: | Malenová, Gabriela, Rowson, Daniel, Boeva, Valentina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667553/ https://www.ncbi.nlm.nih.gov/pubmed/34912376 http://dx.doi.org/10.3389/fgene.2021.771301 |
Ejemplares similares
-
Systematic comparison of multi-omics survival models reveals a widespread lack of noise resistance
por: Wissel, David, et al.
Publicado: (2023) -
Genetic Variants Detection Based on Weighted Sparse Group Lasso
por: Che, Kai, et al.
Publicado: (2020) -
Multi-Task Learning for Compositional Data via Sparse Network Lasso
por: Okazaki, Akira, et al.
Publicado: (2022) -
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
por: Wu, Nuosi, et al.
Publicado: (2019) -
Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells
por: Boeva, Valentina
Publicado: (2016)