Cargando…
Low-Light Image Enhancement Based on Generative Adversarial Network
Image enhancement is considered to be one of the complex tasks in image processing. When the images are captured under dim light, the quality of the images degrades due to low visibility degenerating the vision-based algorithms’ performance that is built for very good quality images with better visi...
Autores principales: | Abirami R., Nandhini, Vincent P. M., Durai Raj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667858/ https://www.ncbi.nlm.nih.gov/pubmed/34912381 http://dx.doi.org/10.3389/fgene.2021.799777 |
Ejemplares similares
-
Multimodal Medical Image Fusion of Positron Emission Tomography and Magnetic Resonance Imaging Using Generative Adversarial Networks
por: Nandhini Abirami, R., et al.
Publicado: (2022) -
Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network
por: Yu, Wenshuo, et al.
Publicado: (2023) -
Cyclic Generative Attention-Adversarial Network for Low-Light Image Enhancement
por: Zhen, Tong, et al.
Publicado: (2023) -
A Novel DenseNet Generative Adversarial Network for Heterogenous Low-Light Image Enhancement
por: Zhang, Jingsi, et al.
Publicado: (2021) -
Conditional Generative Adversarial Networks for Individualized Treatment Effect Estimation and Treatment Selection
por: Ge, Qiyang, et al.
Publicado: (2020)