Cargando…
Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data Using Deep Learning: Early Detection of COVID-19 Outbreak in Italy
Unsupervised anomaly detection for spatio-temporal data has extensive use in a wide variety of applications such as earth science, traffic monitoring, fraud and disease outbreak detection. Most real-world time series data have a spatial dimension as an additional context which is often expressed in...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668158/ https://www.ncbi.nlm.nih.gov/pubmed/34931155 http://dx.doi.org/10.1109/ACCESS.2020.3022366 |
Ejemplares similares
-
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022) -
Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
por: Thiam, Patrick, et al.
Publicado: (2023) -
NFAD: fixing anomaly detection using normalizing flows
por: Ryzhikov, Artem, et al.
Publicado: (2021) -
Unsupervised online multitask learning of behavioral sentence embeddings
por: Tseng, Shao-Yen, et al.
Publicado: (2019) -
Evaluation of MRI Denoising Methods Using Unsupervised Learning
por: Moreno López, Marc, et al.
Publicado: (2021)