Cargando…
Biological Network Inference With GRASP: A Bayesian Network Structure Learning Method Using Adaptive Sequential Monte Carlo
Bayesian networks (BNs) provide a probabilistic, graphical framework for modeling high-dimensional joint distributions with complex correlation structures. BNs have wide applications in many disciplines, including biology, social science, finance and biomedical science. Despite extensive studies in...
Autores principales: | Yu, Kaixian, Cui, Zihan, Sui, Xin, Qiu, Xing, Zhang, Jinfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668238/ https://www.ncbi.nlm.nih.gov/pubmed/34912373 http://dx.doi.org/10.3389/fgene.2021.764020 |
Ejemplares similares
-
Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo
por: Dinh, Vu, et al.
Publicado: (2018) -
Phylogenetic Inference via Sequential Monte Carlo
por: Bouchard-Côté, Alexandre, et al.
Publicado: (2012) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
por: Thijssen, Bram, et al.
Publicado: (2020) -
Monte Carlo samplers for efficient network inference
por: Kilic, Zeliha, et al.
Publicado: (2023) -
Correctness of Sequential Monte Carlo Inference for Probabilistic Programming Languages
por: Lundén, Daniel, et al.
Publicado: (2021)