Cargando…
One Shot Model For The Prediction of COVID-19 And Lesions Segmentation In Chest CT Scans Through The Affinity Among Lesion Mask Features
We present a novel framework that integrates segmentation of lesion masks and prediction of COVID-19 in chest CT scans in one shot. In order to classify the whole input image, we introduce a type of associations among lesion mask features extracted from the scan slice that we refer to as affinities....
Autor principal: | Ter-Sarkisov, Aram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668605/ https://www.ncbi.nlm.nih.gov/pubmed/34924896 http://dx.doi.org/10.1016/j.asoc.2021.108261 |
Ejemplares similares
-
COVID-CT-Mask-Net: prediction of COVID-19 from CT scans using regional features
por: Ter-Sarkisov, Aram
Publicado: (2022) -
Lesion segmentation in lung CT scans using unsupervised adversarial learning
por: Sherwani, Moiz Khan, et al.
Publicado: (2022) -
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
por: Valverde, Sergi, et al.
Publicado: (2018) -
Segmentation of lung lobes and lesions in chest CT for the classification of COVID-19 severity
por: Khomduean, Prachaya, et al.
Publicado: (2023) -
Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients
por: Xie, Weiyi, et al.
Publicado: (2023)