Cargando…

Winter coexistence in herbivorous waterbirds: Niche differentiation in a floodplain, Poyang Lake, China

The classical niche theory supports the idea that stable coexistence requires ecological differences between closely related species. However, information on waterbirds coexistence in the entirely landlocked freshwater system of Poyang Lake is not well understood, especially when the available bioma...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Junpeng, Zhang, Huan, Zhou, Hongkang, Li, Shu, Gao, Bin, Chen, Peng, Ma, Long, Xu, Zhifeng, Zhang, Zhen, Xu, Changxin, Ruan, Luzhang, Ge, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668764/
https://www.ncbi.nlm.nih.gov/pubmed/34938476
http://dx.doi.org/10.1002/ece3.8314
Descripción
Sumario:The classical niche theory supports the idea that stable coexistence requires ecological differences between closely related species. However, information on waterbirds coexistence in the entirely landlocked freshwater system of Poyang Lake is not well understood, especially when the available biomass of their food in the area decreases. In this study, we tested the ecological segregation mechanisms in the 2015/2016 and 2016/2017 wintering periods among eight herbivorous waterbirds (including the Siberian crane Grus leucogeranus, hooded crane Grus monacha, white‐naped crane Grus vipio, common crane Grus grus, greater white‐fronted goose Anser albifrons, bean goose Anser fabalis, swan goose Anser cygnoides, and tundra swan Cygnus columbianus) at Poyang Lake. Using field observations and species niche and foraging habitat selection models, we investigated the abundance, distribution, and food sources of these eight waterbird species to quantify and compare their habitat use and ecological niches. Our results showed that niche segregation among the waterbirds, with respect to food types, time, and spatial location, allow them to coexist and use similar resources. The water level gradually receded in the sub‐lakes of the Poyang Lake, which could provide food sources and various habitats for wintering herbivorous waterbirds to coexist. We demonstrated that the differences in habitat use could mitigate interspecific competition, which may explain the mechanism whereby waterbirds of Poyang Lake coexist during the wintering period, despite considerable overlap in the dietary niches of herbivorous waterbirds.