Cargando…

Effects of enhanced productivity of resources shared by predators in a food‐web module: Comparing results of a field experiment to predictions of mathematical models of intra‐guild predation

We compared the response to resource enhancement of a simple empirical model of intra‐guild predation (IGP) to the predictions of published, simple mathematical models of asymmetric IGP (a generalist IG Predator that feeds both on a specialist IG Prey and a Resource that it shares with the IG Prey)....

Descripción completa

Detalles Bibliográficos
Autores principales: Wise, David H., Farfan, Monica A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668814/
https://www.ncbi.nlm.nih.gov/pubmed/34938518
http://dx.doi.org/10.1002/ece3.8375
Descripción
Sumario:We compared the response to resource enhancement of a simple empirical model of intra‐guild predation (IGP) to the predictions of published, simple mathematical models of asymmetric IGP (a generalist IG Predator that feeds both on a specialist IG Prey and a Resource that it shares with the IG Prey). The empirical model was a food‐web module created by pooling species abundances across many families in a speciose community of soil micro‐arthropods into three categories: IG Predator (large predatory mites), IG Prey (small predatory mites), and a shared Resource (fungivorous mites and springtails). By pooling abundances of species belonging to broadly defined functional groups, we tested the hypothesis that IGP is a dominant organizing principle in this community. Simple mathematical models of asymmetric IGP predict that increased input of nutrients and energy to the shared Resource will increase the equilibrium density of Resource and IG Predator, but will decrease that of IG Prey. In a field experiment, we observed how the three categories of the empirical model responded to two rates of addition of artificial detritus, which enhanced the food of fungivores, the Resource of the IGP module. By the experiment's end, fungivore densities had increased ~1.5× (ratio of pooled fungivore densities in the higher‐input treatment to plots with no addition of detritus), and densities of IG Predators had increased ~4×. Contrary to the prediction of mathematical models, IG Prey had not decreased, but instead had increased ~1.5×. We discuss possible reasons for the failure of the empirical model to agree with IGP theory. We then explore analogies between the behavior of the empirical model and another mathematical model of trophic interactions as one way to gain insights into the trophic connections in this community. We also propose one way forward for reporting comparisons of simple empirical and mathematical models.