Cargando…
Development and evaluation of bidirectional LSTM freeway traffic forecasting models using simulation data
Long short-term memory (LSTM) models provide high predictive performance through their ability to recognize longer sequences of time series data. More recently, bidirectional deep learning models (BiLSTM) have extended the LSTM capabilities by training the input data twice in forward and backward di...
Autores principales: | Abduljabbar, Rusul L., Dia, Hussein, Tsai, Pei-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668885/ https://www.ncbi.nlm.nih.gov/pubmed/34903780 http://dx.doi.org/10.1038/s41598-021-03282-z |
Ejemplares similares
-
Traffic Games: Modeling Freeway Traffic with Game Theory
por: Cortés-Berrueco, Luis E., et al.
Publicado: (2016) -
New Algorithms for Computing the Time-to-Collision in Freeway Traffic Simulation Models
por: Hou, Jia, et al.
Publicado: (2014) -
A systematic review of the impacts of the coronavirus crisis on urban transport: Key lessons learned and prospects for future cities
por: Abduljabbar, Rusul L., et al.
Publicado: (2022) -
The Freeway Running through the Yard: Traffic Exhaust and Asthma in Children
por: Potera, Carol
Publicado: (2006) -
A novel bidirectional LSTM deep learning approach for COVID-19 forecasting
por: Aung, Nway Nway, et al.
Publicado: (2023)