Cargando…
Determination of biomarkers from microarray data using graph neural network and spectral clustering
In bioinformatics, the rapid development of gene sequencing technology has produced an increasing amount of microarray data. This type of data shares the typical characteristics of small sample size and high feature dimensions. Searching for biomarkers from microarray data, which expression features...
Autores principales: | Yu, Kun, Xie, Weidong, Wang, Linjie, Zhang, Shoujia, Li, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668890/ https://www.ncbi.nlm.nih.gov/pubmed/34903818 http://dx.doi.org/10.1038/s41598-021-03316-6 |
Ejemplares similares
-
A novel biomarker selection method combining graph neural network and gene relationships applied to microarray data
por: Xie, Weidong, et al.
Publicado: (2022) -
ILRC: a hybrid biomarker discovery algorithm based on improved L1 regularization and clustering in microarray data
por: Yu, Kun, et al.
Publicado: (2021) -
Spectral Clustering by Subspace Randomization and Graph Fusion for High-Dimensional Data
por: Cai, Xiaosha, et al.
Publicado: (2020) -
On a two-truths phenomenon in spectral graph clustering
por: Priebe, Carey E., et al.
Publicado: (2019) -
Super High-Throughput
Screening of Enzyme Variants
by Spectral Graph Convolutional Neural Networks
por: Ramírez-Palacios, Carlos, et al.
Publicado: (2023)