Cargando…
Deep learning data augmentation for Raman spectroscopy cancer tissue classification
Recently, Raman Spectroscopy (RS) was demonstrated to be a non-destructive way of cancer diagnosis, due to the uniqueness of RS measurements in revealing molecular biochemical changes between cancerous vs. normal tissues and cells. In order to design computational approaches for cancer detection, th...
Autores principales: | Wu, Man, Wang, Shuwen, Pan, Shirui, Terentis, Andrew C., Strasswimmer, John, Zhu, Xingquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668947/ https://www.ncbi.nlm.nih.gov/pubmed/34903743 http://dx.doi.org/10.1038/s41598-021-02687-0 |
Ejemplares similares
-
Classification of Coronavirus Spike Proteins by Deep-Learning-Based Raman Spectroscopy and its Interpretative Analysis
por: Mo, Wenbo, et al.
Publicado: (2023) -
Glioma biopsies Classification Using Raman Spectroscopy and Machine Learning Models on Fresh Tissue Samples
por: Riva, Marco, et al.
Publicado: (2021) -
Distributed Raman Spectrum Data Augmentation System Using Federated Learning with Deep Generative Models
por: Kim, Yaeran, et al.
Publicado: (2022) -
Classification of deep-sea cold seep bacteria by transformer combined with Raman spectroscopy
por: Liu, Bo, et al.
Publicado: (2023) -
Classification of Soft Tissue Sarcoma Specimens with Raman Spectroscopy as Smart Sensing Technology
por: Li, Liming, et al.
Publicado: (2021)