Cargando…
Artificial intelligence based automatic quantification of epicardial adipose tissue suitable for large scale population studies
To develop a fully automatic model capable of reliably quantifying epicardial adipose tissue (EAT) volumes and attenuation in large scale population studies to investigate their relation to markers of cardiometabolic risk. Non-contrast cardiac CT images from the SCAPIS study were used to train and t...
Autores principales: | Molnar, David, Enqvist, Olof, Ulén, Johannes, Larsson, Måns, Brandberg, John, Johnsson, Åse A., Björnson, Elias, Bergström, Göran, Hjelmgren, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669008/ https://www.ncbi.nlm.nih.gov/pubmed/34903773 http://dx.doi.org/10.1038/s41598-021-03150-w |
Ejemplares similares
-
Pre-diabetes is associated with attenuation rather than volume of epicardial adipose tissue on computed tomography
por: Molnar, David, et al.
Publicado: (2023) -
Deep learning‐based quantification of PET/CT prostate gland uptake: association with overall survival
por: Polymeri, Eirini, et al.
Publicado: (2019) -
Convolutional neural network-based automatic heart segmentation and quantitation in (123)I-metaiodobenzylguanidine SPECT imaging
por: Saito, Shintaro, et al.
Publicado: (2021) -
Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies
por: Kullberg, Joel, et al.
Publicado: (2017) -
Freely available convolutional neural network-based quantification of PET/CT lesions is associated with survival in patients with lung cancer
por: Borrelli, Pablo, et al.
Publicado: (2022)