Cargando…

Identification of two downregulated circRNAs in patients with acute B-lymphocytic leukemia

Acute B-lymphocytic leukemia (B-ALL) is associated with a high mortality rate, with no effective treatment strategies available. The identification of diagnostic and prognostic biomarkers of B-ALL can contribute to the development of novel therapeutic methods and drugs, which can improve the surviva...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Bo, Zhong, Liansheng, Tian, Liu, Zhang, Ye, Wang, Runan, He, Qun, Zhao, Yujie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669665/
https://www.ncbi.nlm.nih.gov/pubmed/34966456
http://dx.doi.org/10.3892/ol.2021.13158
Descripción
Sumario:Acute B-lymphocytic leukemia (B-ALL) is associated with a high mortality rate, with no effective treatment strategies available. The identification of diagnostic and prognostic biomarkers of B-ALL can contribute to the development of novel therapeutic methods and drugs, which can improve the survival outcomes of patients with B-ALL. The present study aimed to identify downregulated circular RNAs (circRNAs) in patients with B-ALL. RNA sequencing was performed to construct the circRNA expression profiles in B-ALL cells and normal human lymphoblasts. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. In addition, reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the expression levels of the downregulated circRNAs. A total of 263 differentially expressed circRNAs were identified, including 76 upregulated and 187 downregulated circRNAs, respectively. The upregulated circRNAs were mainly enriched in ‘macromolecule modification’, ‘protein modification’ and ‘cellular protein modification processes’, while the downregulated circRNAs were mainly enriched in the ‘negative regulation of RNA biosynthetic processes’, ‘natural killer cell-mediated cytotoxicity’ and ‘viral carcinogenesis’. RT-qPCR analysis demonstrated that two of the downregulated circRNAs (hsa_circ_0000745 and chr15:87949594-87966067-), identified during microarray analysis were also significantly downregulated in Ball-1 cells and B-ALL bone marrow samples. Thus, these circRNAs may serve as biomarkers for patients with B-ALL.