Cargando…
Stacking Ensemble-Based Intelligent Machine Learning Model for Predicting Post-COVID-19 Complications
The recent outbreak of novel coronavirus disease (COVID-19) has resulted in healthcare crises across the globe. Moreover, the persistent and prolonged complications of post-COVID-19 or long COVID are also putting extreme pressure on hospital authorities due to the constrained healthcare resources. O...
Autores principales: | Gupta, Aditya, Jain, Vibha, Singh, Amritpal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ohmsha
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669670/ https://www.ncbi.nlm.nih.gov/pubmed/34924675 http://dx.doi.org/10.1007/s00354-021-00144-0 |
Ejemplares similares
-
Prediction Framework on Early Urine Infection in IoT–Fog Environment Using XGBoost Ensemble Model
por: Gupta, Aditya, et al.
Publicado: (2023) -
Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs
por: Kalule, Ramanzani, et al.
Publicado: (2023) -
A Stacking Ensemble Learning Framework for Genomic Prediction
por: Liang, Mang, et al.
Publicado: (2021) -
StackBRAF: A Large-Scale Stacking Ensemble Learning
for BRAF Affinity Prediction
por: Syahid, Nur Fadhilah, et al.
Publicado: (2023) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023)