Cargando…

Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers

Spatially resolved characterization of the transcriptome and proteome promises to provide further clarity on cancer pathogenesis and etiology, which may inform future clinical practice through classifier development for clinical outcomes. However, batch effects may potentially obscure the ability of...

Descripción completa

Detalles Bibliográficos
Autores principales: Levy, Joshua J., Bobak, Carly A., Nasir-Moin, Mustafa, Veziroglu, Eren M., Palisoul, Scott M., Barney, Rachael E., Salas, Lucas A., Christensen, Brock C., Tsongalis, Gregory J., Vaickus, Louis J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669762/
https://www.ncbi.nlm.nih.gov/pubmed/34890147
_version_ 1784614843853045760
author Levy, Joshua J.
Bobak, Carly A.
Nasir-Moin, Mustafa
Veziroglu, Eren M.
Palisoul, Scott M.
Barney, Rachael E.
Salas, Lucas A.
Christensen, Brock C.
Tsongalis, Gregory J.
Vaickus, Louis J.
author_facet Levy, Joshua J.
Bobak, Carly A.
Nasir-Moin, Mustafa
Veziroglu, Eren M.
Palisoul, Scott M.
Barney, Rachael E.
Salas, Lucas A.
Christensen, Brock C.
Tsongalis, Gregory J.
Vaickus, Louis J.
author_sort Levy, Joshua J.
collection PubMed
description Spatially resolved characterization of the transcriptome and proteome promises to provide further clarity on cancer pathogenesis and etiology, which may inform future clinical practice through classifier development for clinical outcomes. However, batch effects may potentially obscure the ability of machine learning methods to derive complex associations within spatial omics data. Profiling thirty-five stage three colon cancer patients using the GeoMX Digital Spatial Profiler, we found that mixed-effects machine learning (MEML) methods() may provide utility for overcoming significant batch effects to communicate key and complex disease associations from spatial information. These results point to further exploration and application of MEML methods within the spatial omics algorithm development life cycle for clinical deployment.
format Online
Article
Text
id pubmed-8669762
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-86697622022-01-01 Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers Levy, Joshua J. Bobak, Carly A. Nasir-Moin, Mustafa Veziroglu, Eren M. Palisoul, Scott M. Barney, Rachael E. Salas, Lucas A. Christensen, Brock C. Tsongalis, Gregory J. Vaickus, Louis J. Pac Symp Biocomput Article Spatially resolved characterization of the transcriptome and proteome promises to provide further clarity on cancer pathogenesis and etiology, which may inform future clinical practice through classifier development for clinical outcomes. However, batch effects may potentially obscure the ability of machine learning methods to derive complex associations within spatial omics data. Profiling thirty-five stage three colon cancer patients using the GeoMX Digital Spatial Profiler, we found that mixed-effects machine learning (MEML) methods() may provide utility for overcoming significant batch effects to communicate key and complex disease associations from spatial information. These results point to further exploration and application of MEML methods within the spatial omics algorithm development life cycle for clinical deployment. 2022 /pmc/articles/PMC8669762/ /pubmed/34890147 Text en https://creativecommons.org/licenses/by-nc/4.0/Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
spellingShingle Article
Levy, Joshua J.
Bobak, Carly A.
Nasir-Moin, Mustafa
Veziroglu, Eren M.
Palisoul, Scott M.
Barney, Rachael E.
Salas, Lucas A.
Christensen, Brock C.
Tsongalis, Gregory J.
Vaickus, Louis J.
Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers
title Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers
title_full Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers
title_fullStr Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers
title_full_unstemmed Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers
title_short Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers
title_sort mixed effects machine learning models for colon cancer metastasis prediction using spatially localized immuno-oncology markers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669762/
https://www.ncbi.nlm.nih.gov/pubmed/34890147
work_keys_str_mv AT levyjoshuaj mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT bobakcarlya mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT nasirmoinmustafa mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT vezirogluerenm mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT palisoulscottm mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT barneyrachaele mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT salaslucasa mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT christensenbrockc mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT tsongalisgregoryj mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers
AT vaickuslouisj mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers