Cargando…
Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers
Spatially resolved characterization of the transcriptome and proteome promises to provide further clarity on cancer pathogenesis and etiology, which may inform future clinical practice through classifier development for clinical outcomes. However, batch effects may potentially obscure the ability of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669762/ https://www.ncbi.nlm.nih.gov/pubmed/34890147 |
_version_ | 1784614843853045760 |
---|---|
author | Levy, Joshua J. Bobak, Carly A. Nasir-Moin, Mustafa Veziroglu, Eren M. Palisoul, Scott M. Barney, Rachael E. Salas, Lucas A. Christensen, Brock C. Tsongalis, Gregory J. Vaickus, Louis J. |
author_facet | Levy, Joshua J. Bobak, Carly A. Nasir-Moin, Mustafa Veziroglu, Eren M. Palisoul, Scott M. Barney, Rachael E. Salas, Lucas A. Christensen, Brock C. Tsongalis, Gregory J. Vaickus, Louis J. |
author_sort | Levy, Joshua J. |
collection | PubMed |
description | Spatially resolved characterization of the transcriptome and proteome promises to provide further clarity on cancer pathogenesis and etiology, which may inform future clinical practice through classifier development for clinical outcomes. However, batch effects may potentially obscure the ability of machine learning methods to derive complex associations within spatial omics data. Profiling thirty-five stage three colon cancer patients using the GeoMX Digital Spatial Profiler, we found that mixed-effects machine learning (MEML) methods() may provide utility for overcoming significant batch effects to communicate key and complex disease associations from spatial information. These results point to further exploration and application of MEML methods within the spatial omics algorithm development life cycle for clinical deployment. |
format | Online Article Text |
id | pubmed-8669762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-86697622022-01-01 Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers Levy, Joshua J. Bobak, Carly A. Nasir-Moin, Mustafa Veziroglu, Eren M. Palisoul, Scott M. Barney, Rachael E. Salas, Lucas A. Christensen, Brock C. Tsongalis, Gregory J. Vaickus, Louis J. Pac Symp Biocomput Article Spatially resolved characterization of the transcriptome and proteome promises to provide further clarity on cancer pathogenesis and etiology, which may inform future clinical practice through classifier development for clinical outcomes. However, batch effects may potentially obscure the ability of machine learning methods to derive complex associations within spatial omics data. Profiling thirty-five stage three colon cancer patients using the GeoMX Digital Spatial Profiler, we found that mixed-effects machine learning (MEML) methods() may provide utility for overcoming significant batch effects to communicate key and complex disease associations from spatial information. These results point to further exploration and application of MEML methods within the spatial omics algorithm development life cycle for clinical deployment. 2022 /pmc/articles/PMC8669762/ /pubmed/34890147 Text en https://creativecommons.org/licenses/by-nc/4.0/Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License. |
spellingShingle | Article Levy, Joshua J. Bobak, Carly A. Nasir-Moin, Mustafa Veziroglu, Eren M. Palisoul, Scott M. Barney, Rachael E. Salas, Lucas A. Christensen, Brock C. Tsongalis, Gregory J. Vaickus, Louis J. Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers |
title | Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers |
title_full | Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers |
title_fullStr | Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers |
title_full_unstemmed | Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers |
title_short | Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers |
title_sort | mixed effects machine learning models for colon cancer metastasis prediction using spatially localized immuno-oncology markers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669762/ https://www.ncbi.nlm.nih.gov/pubmed/34890147 |
work_keys_str_mv | AT levyjoshuaj mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT bobakcarlya mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT nasirmoinmustafa mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT vezirogluerenm mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT palisoulscottm mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT barneyrachaele mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT salaslucasa mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT christensenbrockc mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT tsongalisgregoryj mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers AT vaickuslouisj mixedeffectsmachinelearningmodelsforcoloncancermetastasispredictionusingspatiallylocalizedimmunooncologymarkers |