Cargando…
iAIPs: Identifying Anti-Inflammatory Peptides Using Random Forest
Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the inflammatory response, and these peptides have been used to treat some inflammatory and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino acid sequences is critical for the discover...
Autores principales: | Zhao, Dongxu, Teng, Zhixia, Li, Yanjuan, Chen, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669811/ https://www.ncbi.nlm.nih.gov/pubmed/34917130 http://dx.doi.org/10.3389/fgene.2021.773202 |
Ejemplares similares
-
PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features
por: Khatun, Mst. Shamima, et al.
Publicado: (2019) -
iEnhancer-EBLSTM: Identifying Enhancers and Strengths by Ensembles of Bidirectional Long Short-Term Memory
por: Niu, Kun, et al.
Publicado: (2021) -
i4mC-EL: Identifying DNA N4-Methylcytosine Sites in the Mouse Genome Using Ensemble Learning
por: Li, Yanjuan, et al.
Publicado: (2021) -
ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree
por: Li, Yanjuan, et al.
Publicado: (2023) -
A Method for Identifying Vesicle Transport Proteins Based on LibSVM and MRMD
por: Tao, Zhiyu, et al.
Publicado: (2020)