Cargando…

Protein expression of the tear film of domestic cats before and after inoculation with Toxoplasma gondii

BACKGROUND: Tear film (TF) helps maintain and protect ocular function against damage to the ocular surface. Proteins are one of its main constituents, whose expression pattern can be used as a biomarker of ocular changes and systemic diseases. The aim of this study was to evaluate the expression of...

Descripción completa

Detalles Bibliográficos
Autores principales: Guedes, Paula Elisa Brandão, Veloso, Jéssica Fontes, Lacerda, Luciana Carvalho, Santana, Juliano Oliveira, Mora-Ocampo, Irma Yuliana, Pirovani, Carlos Priminho, Cruz, Rebeca Dalety Santos, Munhoz, Alexandre Dias, Carlos, Renata Santiago Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670102/
https://www.ncbi.nlm.nih.gov/pubmed/34906132
http://dx.doi.org/10.1186/s12917-021-03080-9
Descripción
Sumario:BACKGROUND: Tear film (TF) helps maintain and protect ocular function against damage to the ocular surface. Proteins are one of its main constituents, whose expression pattern can be used as a biomarker of ocular changes and systemic diseases. The aim of this study was to evaluate the expression of proteins in the TF of domestic cats before and after infection with Toxoplasma gondii, in the phases of acute infection and chronicity. Twelve healthy cats received orally homogenized brain matter obtained from mice inoculated with T. gondii oocysts, strain ME49. Cat feces were collected daily from the third day after infection to assess the release of oocysts. TF samples were obtained from cats, by Schirmer’s Tear Test 1, on day 0 (before infection), day 5 after infection (acute phase of infection, with maximum peak release of oocysts in feces) and on day 21 after infection (start of chronic phase, 7 days after total absence of oocyst release in feces). Tear samples were also submitted to proteomic analysis in a Q-Tof-Premier mass spectrometer. RESULTS: A total of 37 proteins with scores equal to or greater than 100 were identified on D0, followed by 36 on D5 and 42 on D21. Of these, 27 were common to D0 and D5, 33 to D0 and D21, 27 to D5 and D21, and 26 were common to the three groups, totaling 54 proteins. The most abundant proteins were lipocalin allergen Fel d, serum albumin, aldehyde dehydrogenase, lactoperoxidase and lactotransferrin. There was no significant difference in the abundance of proteins found on D0 and D5, but there was a statistical difference between D0 and D21 for ACT1_AEDAE, CERU_HUMAN and GELS_HUMAN. Regarding D5 and D21, there were significant differences for KV1_CANLF, LAC_PIG, TRFL_PIG, ACT1_AEDAE, CERU_HUMAN, GELS_HUMAN and OVOS2_HUMAN. CONCLUSIONS: The main proteins identified in the TF of domestic cats are similar to those found in humans and other animal species. Most are part of the ocular surface defense system against injuries. The most expressed proteins in animals in the chronic phase of T. gondii infection are associated with the immune response to the parasite. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12917-021-03080-9.