Cargando…
Adapted time-varying covariates Cox model for predicting future cirrhosis development performs well in a large hepatitis C cohort
BACKGROUND: Patients with hepatitis C virus (HCV) frequently remain at risk for cirrhosis after sustained virologic response (SVR). Existing cirrhosis predictive models for HCV do not account for dynamic antiviral treatment status and are limited by fixed laboratory covariates and short follow up ti...
Autores principales: | Beste, Lauren A., Zhang, Xuefei, Su, Grace L., Van, Tony, Ioannou, George N., Oselio, Brandon, Tincopa, Monica, Liu, Boang, Singal, Amit G., Zhu, Ji, Waljee, Akbar K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670121/ https://www.ncbi.nlm.nih.gov/pubmed/34903225 http://dx.doi.org/10.1186/s12911-021-01711-7 |
Ejemplares similares
-
Reinforcement learning evaluation of treatment policies for patients with hepatitis C virus
por: Oselio, Brandon, et al.
Publicado: (2022) -
Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis
por: Ioannou, George N., et al.
Publicado: (2020) -
Machine learning models to predict disease progression among veterans with hepatitis C virus
por: Konerman, Monica A., et al.
Publicado: (2019) -
Multiple imputation in Cox regression when there are time‐varying effects of covariates
por: Keogh, Ruth H., et al.
Publicado: (2018) -
Generating survival times to simulate Cox proportional hazards models with time-varying covariates
por: Austin, Peter C
Publicado: (2012)