Cargando…

Evidence of an active Cushing reflex in a preterm neonate with hyaline membrane disease: a case report

BACKGROUND: The Cushing reflex does not appear to have been described in preterm neonates. This case report shows the presence of an active Cushing reflex in a 32-week preterm neonate with hyaline membrane disease. CASE PRESENTATION: The 1.94 kg Caucasian infant was delivered by caesarean section fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Rothberg, Alan D., Smith, Johan, Lubbe, Welma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670276/
https://www.ncbi.nlm.nih.gov/pubmed/34903289
http://dx.doi.org/10.1186/s13256-021-03161-1
Descripción
Sumario:BACKGROUND: The Cushing reflex does not appear to have been described in preterm neonates. This case report shows the presence of an active Cushing reflex in a 32-week preterm neonate with hyaline membrane disease. CASE PRESENTATION: The 1.94 kg Caucasian infant was delivered by caesarean section following concerns about possible maternal infection and fetal compromise. Chest X-ray showed mild-to-moderate hyaline membrane disease and treatment was initiated with supplemental oxygen and nasal continuous positive airway pressure. It is probable that a pneumothorax occurred at 5–6 hours of age, with progression during the day. Interstitial air, pneumomediastinum, and tension pneumothorax were diagnosed on subsequent X-ray, and ultrasound of the brain showed a grade IV intraventricular hemorrhage. A review of the nurses’ recordings of heart rate, blood pressure, and respiratory rate showed a progressive increase in blood pressure accompanied by slowing of the heart rate and irregular respiration. These are features of the Cushing reflex that is elicited in response to raised intracranial pressure. CONCLUSION: While well-described in older children and adults, in neonates the Cushing reflex has mainly been described in animal experiments and infants who have developed hydrocephalus. It is likely that in this case, the reflex was elicited as a result of a progressive increase in intracranial pressure due to the combination of elevated intrathoracic pressure, obstructed venous return from the brain, and concurrent intraventricular hemorrhage.