Cargando…
One for “All”: a unified model for fine-grained sentiment analysis under three tasks
BACKGROUND: Fine-grained sentiment analysis is used to interpret consumers’ sentiments, from their written comments, towards specific entities on specific aspects. Previous researchers have introduced three main tasks in this field (ABSA, TABSA, MEABSA), covering all kinds of social media data (e.g....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670363/ https://www.ncbi.nlm.nih.gov/pubmed/34977357 http://dx.doi.org/10.7717/peerj-cs.816 |
_version_ | 1784614965202649088 |
---|---|
author | Lu, Heng-yang Yang, Jun Hu, Cong Fang, Wei |
author_facet | Lu, Heng-yang Yang, Jun Hu, Cong Fang, Wei |
author_sort | Lu, Heng-yang |
collection | PubMed |
description | BACKGROUND: Fine-grained sentiment analysis is used to interpret consumers’ sentiments, from their written comments, towards specific entities on specific aspects. Previous researchers have introduced three main tasks in this field (ABSA, TABSA, MEABSA), covering all kinds of social media data (e.g., review specific, questions and answers, and community-based). In this paper, we identify and address two common challenges encountered in these three tasks, including the low-resource problem and the sentiment polarity bias. METHODS: We propose a unified model called PEA by integrating data augmentation methodology with the pre-trained language model, which is suitable for all the ABSA, TABSA and MEABSA tasks. Two data augmentation methods, which are entity replacement and dual noise injection, are introduced to solve both challenges at the same time. An ensemble method is also introduced to incorporate the results of the basic RNN-based and BERT-based models. RESULTS: PEA shows significant improvements on all three fine-grained sentiment analysis tasks when compared with state-of-the-art models. It also achieves comparable results with what the baseline models obtain while using only 20% of their training data, which demonstrates its extraordinary performance under extreme low-resource conditions. |
format | Online Article Text |
id | pubmed-8670363 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86703632021-12-30 One for “All”: a unified model for fine-grained sentiment analysis under three tasks Lu, Heng-yang Yang, Jun Hu, Cong Fang, Wei PeerJ Comput Sci Artificial Intelligence BACKGROUND: Fine-grained sentiment analysis is used to interpret consumers’ sentiments, from their written comments, towards specific entities on specific aspects. Previous researchers have introduced three main tasks in this field (ABSA, TABSA, MEABSA), covering all kinds of social media data (e.g., review specific, questions and answers, and community-based). In this paper, we identify and address two common challenges encountered in these three tasks, including the low-resource problem and the sentiment polarity bias. METHODS: We propose a unified model called PEA by integrating data augmentation methodology with the pre-trained language model, which is suitable for all the ABSA, TABSA and MEABSA tasks. Two data augmentation methods, which are entity replacement and dual noise injection, are introduced to solve both challenges at the same time. An ensemble method is also introduced to incorporate the results of the basic RNN-based and BERT-based models. RESULTS: PEA shows significant improvements on all three fine-grained sentiment analysis tasks when compared with state-of-the-art models. It also achieves comparable results with what the baseline models obtain while using only 20% of their training data, which demonstrates its extraordinary performance under extreme low-resource conditions. PeerJ Inc. 2021-12-10 /pmc/articles/PMC8670363/ /pubmed/34977357 http://dx.doi.org/10.7717/peerj-cs.816 Text en ©2021 Lu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Artificial Intelligence Lu, Heng-yang Yang, Jun Hu, Cong Fang, Wei One for “All”: a unified model for fine-grained sentiment analysis under three tasks |
title | One for “All”: a unified model for fine-grained sentiment analysis under three tasks |
title_full | One for “All”: a unified model for fine-grained sentiment analysis under three tasks |
title_fullStr | One for “All”: a unified model for fine-grained sentiment analysis under three tasks |
title_full_unstemmed | One for “All”: a unified model for fine-grained sentiment analysis under three tasks |
title_short | One for “All”: a unified model for fine-grained sentiment analysis under three tasks |
title_sort | one for “all”: a unified model for fine-grained sentiment analysis under three tasks |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670363/ https://www.ncbi.nlm.nih.gov/pubmed/34977357 http://dx.doi.org/10.7717/peerj-cs.816 |
work_keys_str_mv | AT luhengyang oneforallaunifiedmodelforfinegrainedsentimentanalysisunderthreetasks AT yangjun oneforallaunifiedmodelforfinegrainedsentimentanalysisunderthreetasks AT hucong oneforallaunifiedmodelforfinegrainedsentimentanalysisunderthreetasks AT fangwei oneforallaunifiedmodelforfinegrainedsentimentanalysisunderthreetasks |