Cargando…

In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui

During metamorphosis, the wings of a butterfly sprout hundreds of thousands of scales with intricate microstructures and nano-structures that determine the wings’ optical appearance, wetting characteristics, thermodynamic properties, and aerodynamic behavior. Although the functional characteristics...

Descripción completa

Detalles Bibliográficos
Autores principales: McDougal, Anthony D., Kang, Sungsam, Yaqoob, Zahid, So, Peter T. C., Kolle, Mathias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670486/
https://www.ncbi.nlm.nih.gov/pubmed/34845021
http://dx.doi.org/10.1073/pnas.2112009118
_version_ 1784614986563190784
author McDougal, Anthony D.
Kang, Sungsam
Yaqoob, Zahid
So, Peter T. C.
Kolle, Mathias
author_facet McDougal, Anthony D.
Kang, Sungsam
Yaqoob, Zahid
So, Peter T. C.
Kolle, Mathias
author_sort McDougal, Anthony D.
collection PubMed
description During metamorphosis, the wings of a butterfly sprout hundreds of thousands of scales with intricate microstructures and nano-structures that determine the wings’ optical appearance, wetting characteristics, thermodynamic properties, and aerodynamic behavior. Although the functional characteristics of scales are well known and prove desirable in various applications, the dynamic processes and temporal coordination required to sculpt the scales’ many structural features remain poorly understood. Current knowledge of scale growth is primarily gained from ex vivo studies of fixed scale cells at discrete time points; to fully understand scale formation, it is critical to characterize the time-dependent morphological changes throughout their development. Here, we report the continuous, in vivo, label-free imaging of growing scale cells of Vanessa cardui using speckle-correlation reflection phase microscopy. By capturing time-resolved volumetric tissue data together with nanoscale surface height information, we establish a morphological timeline of wing scale formation and gain quantitative insights into the underlying processes involved in scale cell patterning and growth. We identify early differences in the patterning of cover and ground scales on the young wing and quantify geometrical parameters of growing scale features, which suggest that surface growth is critical to structure formation. Our quantitative, time-resolved in vivo imaging of butterfly scale development provides the foundation for decoding the processes and biomechanical principles involved in the formation of functional structures in biological materials.
format Online
Article
Text
id pubmed-8670486
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-86704862021-12-28 In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui McDougal, Anthony D. Kang, Sungsam Yaqoob, Zahid So, Peter T. C. Kolle, Mathias Proc Natl Acad Sci U S A Biological Sciences During metamorphosis, the wings of a butterfly sprout hundreds of thousands of scales with intricate microstructures and nano-structures that determine the wings’ optical appearance, wetting characteristics, thermodynamic properties, and aerodynamic behavior. Although the functional characteristics of scales are well known and prove desirable in various applications, the dynamic processes and temporal coordination required to sculpt the scales’ many structural features remain poorly understood. Current knowledge of scale growth is primarily gained from ex vivo studies of fixed scale cells at discrete time points; to fully understand scale formation, it is critical to characterize the time-dependent morphological changes throughout their development. Here, we report the continuous, in vivo, label-free imaging of growing scale cells of Vanessa cardui using speckle-correlation reflection phase microscopy. By capturing time-resolved volumetric tissue data together with nanoscale surface height information, we establish a morphological timeline of wing scale formation and gain quantitative insights into the underlying processes involved in scale cell patterning and growth. We identify early differences in the patterning of cover and ground scales on the young wing and quantify geometrical parameters of growing scale features, which suggest that surface growth is critical to structure formation. Our quantitative, time-resolved in vivo imaging of butterfly scale development provides the foundation for decoding the processes and biomechanical principles involved in the formation of functional structures in biological materials. National Academy of Sciences 2021-11-29 2021-12-07 /pmc/articles/PMC8670486/ /pubmed/34845021 http://dx.doi.org/10.1073/pnas.2112009118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
McDougal, Anthony D.
Kang, Sungsam
Yaqoob, Zahid
So, Peter T. C.
Kolle, Mathias
In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui
title In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui
title_full In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui
title_fullStr In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui
title_full_unstemmed In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui
title_short In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui
title_sort in vivo visualization of butterfly scale cell morphogenesis in vanessa cardui
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670486/
https://www.ncbi.nlm.nih.gov/pubmed/34845021
http://dx.doi.org/10.1073/pnas.2112009118
work_keys_str_mv AT mcdougalanthonyd invivovisualizationofbutterflyscalecellmorphogenesisinvanessacardui
AT kangsungsam invivovisualizationofbutterflyscalecellmorphogenesisinvanessacardui
AT yaqoobzahid invivovisualizationofbutterflyscalecellmorphogenesisinvanessacardui
AT sopetertc invivovisualizationofbutterflyscalecellmorphogenesisinvanessacardui
AT kollemathias invivovisualizationofbutterflyscalecellmorphogenesisinvanessacardui