Cargando…

Lattices in Tate modules

Refining a theorem of Zarhin, we prove that, given a g-dimensional abelian variety X and an endomorphism u of X, there exists a matrix [Formula: see text] such that each Tate module [Formula: see text] has a [Formula: see text]-basis on which the action of u is given by A, and similarly for the cova...

Descripción completa

Detalles Bibliográficos
Autores principales: Poonen, Bjorn, Rybakov, Sergey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670492/
https://www.ncbi.nlm.nih.gov/pubmed/34848540
http://dx.doi.org/10.1073/pnas.2113201118
Descripción
Sumario:Refining a theorem of Zarhin, we prove that, given a g-dimensional abelian variety X and an endomorphism u of X, there exists a matrix [Formula: see text] such that each Tate module [Formula: see text] has a [Formula: see text]-basis on which the action of u is given by A, and similarly for the covariant Dieudonné module if over a perfect field of characteristic p.