Cargando…
Transformational machine learning: Learning how to learn from many related scientific problems
Almost all machine learning (ML) is based on representing examples using intrinsic features. When there are multiple related ML problems (tasks), it is possible to transform these features into extrinsic features by first training ML models on other tasks and letting them each make predictions for e...
Autores principales: | Olier, Ivan, Orhobor, Oghenejokpeme I., Dash, Tirtharaj, Davis, Andy M., Soldatova, Larisa N., Vanschoren, Joaquin, King, Ross D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670494/ https://www.ncbi.nlm.nih.gov/pubmed/34845013 http://dx.doi.org/10.1073/pnas.2108013118 |
Ejemplares similares
-
Generating Explainable and Effective Data Descriptors Using Relational Learning: Application to Cancer Biology
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2020) -
Meta-QSAR: a large-scale application of meta-learning to drug design and discovery
por: Olier, Ivan, et al.
Publicado: (2017) -
An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat
por: Grinberg, Nastasiya F., et al.
Publicado: (2019) -
Multi-task learning with a natural metric for quantitative structure activity relationship learning
por: Sadawi, Noureddin, et al.
Publicado: (2019) -
Federated Ensemble Regression Using Classification
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2020)