Cargando…

Understanding the social drivers of antibiotic use during COVID-19 in Bangladesh: Implications for reduction of antimicrobial resistance

Antimicrobial resistance (AMR) is a global public health crisis that is now impacted by the COVID-19 pandemic. Little is known how COVID-19 risks influence people to consume antibiotics, particularly in contexts like Bangladesh where these pharmaceuticals can be purchased without a prescription. Thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalam, Abul, Shano, Shahanaj, Khan, Mohammad Asif, Islam, Ariful, Warren, Narelle, Hassan, Mohammad Mahmudul, Davis, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670684/
https://www.ncbi.nlm.nih.gov/pubmed/34905563
http://dx.doi.org/10.1371/journal.pone.0261368
Descripción
Sumario:Antimicrobial resistance (AMR) is a global public health crisis that is now impacted by the COVID-19 pandemic. Little is known how COVID-19 risks influence people to consume antibiotics, particularly in contexts like Bangladesh where these pharmaceuticals can be purchased without a prescription. This paper identifies the social drivers of antibiotics use among home-based patients who have tested positive with SARS-CoV-2 or have COVID-19-like symptoms. Using qualitative telephone interviews, the research was conducted in two Bangladesh cities with 40 participants who reported that they had tested positive for coronavirus (n = 20) or had COVID-19-like symptoms (n = 20). Our analysis identified five themes in antibiotic use narratives: antibiotics as ‘big’ medicine; managing anxiety; dealing with social repercussions of COVID-19 infection; lack of access to COVID-19 testing and healthcare services; and informal sources of treatment advice. Antibiotics were seen to solve physical and social aspects of COVID-19 infection, with urgent ramifications for AMR in Bangladesh and more general implications for global efforts to mitigate AMR.