Cargando…

An Improved Brain MRI Classification Methodology Based on Statistical Features and Machine Learning Algorithms

In this paper, we have proposed a novel methodology based on statistical features and different machine learning algorithms. The proposed model can be divided into three main stages, namely, preprocessing, feature extraction, and classification. In the preprocessing stage, the median filter has been...

Descripción completa

Detalles Bibliográficos
Autores principales: Fayaz, Muhammad, Qureshi, Muhammad Shuaib, Kussainova, Karlygash, Burkanova, Bermet, Aljarbouh, Ayman, Qureshi, Muhammad Bilal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670911/
https://www.ncbi.nlm.nih.gov/pubmed/34917168
http://dx.doi.org/10.1155/2021/8608305
Descripción
Sumario:In this paper, we have proposed a novel methodology based on statistical features and different machine learning algorithms. The proposed model can be divided into three main stages, namely, preprocessing, feature extraction, and classification. In the preprocessing stage, the median filter has been used in order to remove salt-and-pepper noise because MRI images are normally affected by this type of noise, the grayscale images are also converted to RGB images in this stage. In the preprocessing stage, the histogram equalization has also been used to enhance the quality of each RGB channel. In the feature extraction stage, the three channels, namely, red, green, and blue, are extracted from the RGB images and statistical measures, namely, mean, variance, skewness, kurtosis, entropy, energy, contrast, homogeneity, and correlation, are calculated for each channel; hence, a total of 27 features, 9 for each channel, are extracted from an RGB image. After the feature extraction stage, different machine learning algorithms, such as artificial neural network, k-nearest neighbors' algorithm, decision tree, and Naïve Bayes classifiers, have been applied in the classification stage on the features extracted in the feature extraction stage. We recorded the results with all these algorithms and found that the decision tree results are better as compared to the other classification algorithms which are applied on these features. Hence, we have considered decision tree for further processing. We have also compared the results of the proposed method with some well-known algorithms in terms of simplicity and accuracy; it was noted that the proposed method outshines the existing methods.