Cargando…

Expression of Circulating MicroRNAs and Myokines and Interactions with Serum Osteopontin in Type 2 Diabetic Patients with Moderate and Poor Glycemic Control: A Biochemical and Molecular Study

BACKGROUND: Cellular miRNAs are expressed in tissue fluids with sufficient amounts and were identified as potential molecular targets for studying the physiological mechanisms and correlations with many human diseases particularly diabetes. However, molecular-based changes among older adults with di...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Rawaf, Hadeel A., Alghadir, Ahmad H., Gabr, Sami A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670937/
https://www.ncbi.nlm.nih.gov/pubmed/34917685
http://dx.doi.org/10.1155/2021/7453000
Descripción
Sumario:BACKGROUND: Cellular miRNAs are expressed in tissue fluids with sufficient amounts and were identified as potential molecular targets for studying the physiological mechanisms and correlations with many human diseases particularly diabetes. However, molecular-based changes among older adults with diabetes mellitus (DM) are rarely fully elucidated. AIM: This study is aimed at identifying circulating miRNAs, which hold the potential to serve as biomarkers for the immune-inflammatory changes in older T2D patients with moderate and poor glycemic control status. In addition, the association of both myokines and osteopontin (OPN) levels with circulating miRNAs was identified. METHODS: A total of 80 subjects aged 20–80 years were invited during the period of October 2017–May 2018 to participate in this descriptive cross-sectional study. All subjects were diagnosed with T2D for more than 5 years. Subjects were grouped based on glycemic control (HbA1c values) into two groups: moderate glycemic control (>7-8% HbA1c, no = 30) and poor glycemic control (>8% HbA1c, no = 50), respectively. Diabetic control parameters, fasting blood sugar (FS), HbA1c, fasting insulin (IF), insulin resistance (IR), HOMA-IR, inflammatory cytokines (IL-6, IL-8, IL-18, IL-23, TNF-α, and CRP), osteopontin, and myokines (adropin and irisin) were estimated by colorimetric and immune ELISA assays, respectively. In addition, real-time RT-PCR analysis was performed to evaluate the expression of circulating miRNAs, miR-146a and miR-144, in the serum of all diabetic subjects. RESULTS: In this study, T2D patients with poor glycemic control showed a significant increase in the serum levels of IL-6, IL-8, IL-18, IL-23, TNF-α, CRP, and OPN and a reduction in the levels of myokines, adropin and irisin, compared to patients with moderate glycemic control. The results obtained are significantly correlated with the severity of diabetes measured by HbA1c, FS, IF, and HOMA-IR. In addition, baseline expression of miR-146a is significantly reduced and miR-144 is significantly increased in T2D patients with poor glycemic control compared to those with moderate glycemic control. In all diabetic groups, the expression of miR-146a and miR-144 is significantly correlated with diabetic controls, inflammatory cytokines, myokines, and serum levels of OPN. Respective of gender, women with T2D showed more significant change in the expressed miRNAs, inflammatory cytokines, OPN, and serum myokine markers compared to men. ROC analysis identified AUC cutoff values of miR-146a, miR-144, adropin, irisin, and OPN expression levels with considerable specificity and sensitivity which recommends the potential use of adropin, irisin, and OPN as diagnostic biomarkers for diabetes with varying glycemic control status. CONCLUSION: In this study, molecular expression of certain microRNA species, such as miR-146a and miR-144, was identified and significantly associated with parameters of disease severity, HbA1c, inflammatory cytokines, myokines, and serum osteopontin in T2D patients with moderate and poor glycemic control. The AUC cutoff values of circulating miRNAs, miR-146a and miR-144; myokines, adropin and irisin; and serum OPN were significantly identified by ROC analysis which additionally recommends the potential use of these biomarkers, miR-146a, miR-144, adropin, irisin, and OPN, as diagnostic biomarkers with considerable specificity and sensitivity for diabetes in patients with varying glycemic control status.