Cargando…
Sensitivity analysis of Wasserstein distributionally robust optimization problems
We consider sensitivity of a generic stochastic optimization problem to model uncertainty. We take a non-parametric approach and capture model uncertainty using Wasserstein balls around the postulated model. We provide explicit formulae for the first-order correction to both the value function and t...
Autores principales: | Bartl, Daniel, Drapeau, Samuel, Obłój, Jan, Wiesel, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670962/ https://www.ncbi.nlm.nih.gov/pubmed/35153602 http://dx.doi.org/10.1098/rspa.2021.0176 |
Ejemplares similares
-
Distributionally robust learning-to-rank under the Wasserstein metric
por: Sotudian, Shahabeddin, et al.
Publicado: (2023) -
Distributionally robust mean-absolute deviation portfolio optimization using wasserstein metric
por: Chen, Dali, et al.
Publicado: (2022) -
Joint Wasserstein GAN contribution
por: Glombitza, Jonas, et al.
Publicado: (2018) -
An invitation to statistics in Wasserstein space
por: Panaretos, Victor M, et al.
Publicado: (2020) -
Correcting nuisance variation using Wasserstein distance
por: Tabak, Gil, et al.
Publicado: (2020)