Cargando…
Quality Prediction of Fused Deposition Molding Parts Based on Improved Deep Belief Network
Tensile strength, warping degree, and surface roughness are important indicators to evaluate the quality of fused deposition modeling (FDM) parts, and their accurate and stable prediction is helpful to the development of FDM technology. Thus, a quality prediction method of FDM parts based on an opti...
Autores principales: | Dong, Hai, Gao, Xiuxiu, Wei, Mingqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670973/ https://www.ncbi.nlm.nih.gov/pubmed/34917140 http://dx.doi.org/10.1155/2021/8100371 |
Ejemplares similares
-
Hedysarum coronarium-Based Green Composites Prepared by Compression Molding and Fused Deposition Modeling
por: Scaffaro, Roberto, et al.
Publicado: (2022) -
Decision Tree Methods for Predicting Surface Roughness in Fused Deposition Modeling Parts
por: Barrios, Juan M., et al.
Publicado: (2019) -
Study of Material Color Influences on Mechanical Characteristics of Fused Deposition Modeling Parts
por: Gao, Ge, et al.
Publicado: (2022) -
Online Prediction of Molded Part Quality in the Injection Molding Process Using High-Resolution Time Series
por: Bogedale, Lucas, et al.
Publicado: (2023) -
A Survey of the Influence of Process Parameters on Mechanical Properties of Fused Deposition Modeling Parts
por: Gao, Ge, et al.
Publicado: (2022)