Cargando…
Word Sequential Using Deep LSTM and Matrix Factorization to Handle Rating Sparse Data for E-Commerce Recommender System
Recommender systems are essential engines to deliver product recommendations for e-commerce businesses. Successful adoption of recommender systems could significantly influence the growth of marketing targets. Collaborative filtering is a type of recommender system model that uses customers' ac...
Autores principales: | Hanafi, Mohd Aboobaider, Burhanuddin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670980/ https://www.ncbi.nlm.nih.gov/pubmed/34917141 http://dx.doi.org/10.1155/2021/8751173 |
Ejemplares similares
-
Deep Bi-LSTM Networks for Sequential Recommendation
por: Zhao, Chuanchuan, et al.
Publicado: (2020) -
Rating valence versus rating distribution: perceived helpfulness of word of mouth in e-commerce
por: Kato, Takumi
Publicado: (2022) -
Short-Term Demand Forecast of E-Commerce Platform Based on ConvLSTM Network
por: Li, Zan, et al.
Publicado: (2022) -
Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate
por: Huang, Jianying, et al.
Publicado: (2022) -
Cross-Border E-Commerce Intelligent Information Recommendation System Based on Deep Learning
por: Li, Liuqing
Publicado: (2022)