Cargando…
Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling
Herein, we propose a new deep neural network model based on invariant information clustering (IIC), proposed by Ji et al., to improve the modeling performance of the leave-one-site-out cross-validation (LOSO-CV) for a multi-source dataset. Our Extended IIC (EIIC) is a type of contrastive learning; h...
Autores principales: | Okamoto, Naoki, Akama, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671136/ https://www.ncbi.nlm.nih.gov/pubmed/34924987 http://dx.doi.org/10.3389/fninf.2021.709179 |
Ejemplares similares
-
Conditional Mutual Information Maps as Descriptors of Net Connectivity Levels in the Brain
por: Salvador, Raymond, et al.
Publicado: (2010) -
A Mutual Information Approach to Automate Identification of Neuronal Clusters in Drosophila Brain Images
por: Masse, Nicolas Y., et al.
Publicado: (2012) -
Modular Organization of Brain Resting State Networks in Chronic Back Pain Patients
por: Balenzuela, Pablo, et al.
Publicado: (2010) -
Assessing the Reliability of Template-Based Clustering for Tractography in Healthy Human Adults
por: Kai, Jason, et al.
Publicado: (2022) -
Time-Frequency Representations of Brain Oscillations: Which One Is Better?
por: Bârzan, Harald, et al.
Publicado: (2022)