Cargando…
Training a deep learning model for single-cell segmentation without manual annotation
Advances in the artificial neural network have made machine learning techniques increasingly more important in image analysis tasks. Recently, convolutional neural networks (CNN) have been applied to the problem of cell segmentation from microscopy images. However, previous methods used a supervised...
Autores principales: | Din, Nizam Ud, Yu, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671438/ https://www.ncbi.nlm.nih.gov/pubmed/34907213 http://dx.doi.org/10.1038/s41598-021-03299-4 |
Ejemplares similares
-
A convolutional neural network for segmentation of yeast cells without manual training annotations
por: Kruitbosch, Herbert T, et al.
Publicado: (2021) -
A deep learning segmentation strategy that minimizes the amount of manually annotated images
por: Pécot, Thierry, et al.
Publicado: (2022) -
Image Compositing for Segmentation of Surgical Tools Without Manual Annotations
Publicado: (2021) -
A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
por: Fu, Huazhu, et al.
Publicado: (2020) -
Recursive Training Strategy for a Deep Learning Network for Segmentation of Pathology Nuclei With Incomplete Annotation
por: ZHOU, CHUAN, et al.
Publicado: (2022)