Cargando…
A machine and human reader study on AI diagnosis model safety under attacks of adversarial images
While active efforts are advancing medical artificial intelligence (AI) model development and clinical translation, safety issues of the AI models emerge, but little research has been done. We perform a study to investigate the behaviors of an AI diagnosis model under adversarial images generated by...
Autores principales: | Zhou, Qianwei, Zuley, Margarita, Guo, Yuan, Yang, Lu, Nair, Bronwyn, Vargo, Adrienne, Ghannam, Suzanne, Arefan, Dooman, Wu, Shandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671500/ https://www.ncbi.nlm.nih.gov/pubmed/34907229 http://dx.doi.org/10.1038/s41467-021-27577-x |
Ejemplares similares
-
Predicting cell invasion in breast tumor microenvironment from radiological imaging phenotypes
por: Arefan, Dooman, et al.
Publicado: (2021) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Identifying Prognostic Markers From Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction
por: Hao, Degan, et al.
Publicado: (2022) -
Machine Learning to Identify Metabolic Subtypes of Obesity: A Multi-Center Study
por: Lin, Ziwei, et al.
Publicado: (2021) -
Improving the adversarial transferability with relational graphs ensemble adversarial attack
por: Pi, Jiatian, et al.
Publicado: (2023)