Cargando…
A convolutional deep learning model for improving mammographic breast-microcalcification diagnosis
This study aimed to assess the diagnostic performance of deep convolutional neural networks (DCNNs) in classifying breast microcalcification in screening mammograms. To this end, 1579 mammographic images were collected retrospectively from patients exhibiting suspicious microcalcification in screeni...
Autores principales: | Kang, Daesung, Gweon, Hye Mi, Eun, Na Lae, Youk, Ji Hyun, Kim, Jeong-Ah, Son, Eun Ju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671560/ https://www.ncbi.nlm.nih.gov/pubmed/34907330 http://dx.doi.org/10.1038/s41598-021-03516-0 |
Ejemplares similares
-
Scoring System to Stratify Malignancy Risks for Mammographic Microcalcifications Based on Breast Imaging Reporting and Data System 5th Edition Descriptors
por: Youk, Ji Hyun, et al.
Publicado: (2019) -
Preoperative Nodal US Features for Predicting Recurrence in N1b Papillary Thyroid Carcinoma
por: Eun, Na Lae, et al.
Publicado: (2021) -
Clinical Imaging of Glycogen-rich Clear Cell Carcinoma of the Breast: A Case Series with Literature Review
por: Eun, Na Lae, et al.
Publicado: (2018) -
Identification of Preoperative Magnetic Resonance Imaging Features Associated with Positive Resection Margins in Breast Cancer: A Retrospective Study
por: Kang, Jung-Hyun, et al.
Publicado: (2018) -
Predictors of mammographic microcalcifications
por: Azam, Shadi, et al.
Publicado: (2020)