Cargando…

A compilation and characterisation of lithics in kimberlite and common maar-diatremes and tephra ring deposits

Maar-diatreme volcanoes are the second-most common type on land, occurring in volcanic fields within all major tectonic environments. Their deposits typically contain an abundance of lithic fragments quarried from the substrate, and many contain large, deep-sourced lithic fragments that were erupted...

Descripción completa

Detalles Bibliográficos
Autores principales: Fitzgerald, M. K., White, J. D. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671588/
https://www.ncbi.nlm.nih.gov/pubmed/34907225
http://dx.doi.org/10.1038/s41598-021-03307-7
Descripción
Sumario:Maar-diatreme volcanoes are the second-most common type on land, occurring in volcanic fields within all major tectonic environments. Their deposits typically contain an abundance of lithic fragments quarried from the substrate, and many contain large, deep-sourced lithic fragments that were erupted to the surface. Primary volcaniclastic deposits fill the diatreme structure formed during eruption. There is negligible inelastic deformation of diatreme-adjacent country rock, indicating that country rock is removed to create the diatreme structures, either by being shifting downward below observable levels, ejected upward to contribute to surficial deposits, or dissolved and hidden in magma erupted or intruded at depth. No previous study has systematically reviewed and analysed the reported lithic fragments of maar-diatreme systems. We present a comprehensive compilation from published work of lithic characteristics in maar ejecta rings and in diatreme deposits of both common and kimberlite maar-diatremes. For maar-diatremes and their tephra ring deposits, we find no correlations among lithic clast sizes, shapes, depositional sites, and excavation depths. This is difficult to reconcile with models involving systematic diatreme deepening coupled with tephra-ring growth, but consistent with those involving chaotic explosions and mixing. Larger amounts of data are needed to further examine how these types of volcanoes operate.