Cargando…
Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning Algorithms
INTRODUCTION: Postoperative delirium in geriatric hip fracture patients adversely affects clinical and functional outcomes and increases costs. A preoperative prediction tool to identify high-risk patients may facilitate optimal use of preventive interventions. The purpose of this study was to devel...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671660/ https://www.ncbi.nlm.nih.gov/pubmed/34925951 http://dx.doi.org/10.1177/21514593211062277 |
Sumario: | INTRODUCTION: Postoperative delirium in geriatric hip fracture patients adversely affects clinical and functional outcomes and increases costs. A preoperative prediction tool to identify high-risk patients may facilitate optimal use of preventive interventions. The purpose of this study was to develop a clinical prediction model using machine learning algorithms for preoperative prediction of postoperative delirium in geriatric hip fracture patients. MATERIALS & METHODS: Geriatric patients undergoing operative hip fracture fixation were queried in the American College of Surgeons National Surgical Quality Improvement Program database (ACS NSQIP) from 2016 through 2019. A total of 28 207 patients were included, of which 8030 (28.5%) developed a postoperative delirium. First, the dataset was randomly split 80:20 into a training and testing subset. Then, a random forest (RF) algorithm was used to identify the variables predictive for a postoperative delirium. The machine learning-model was developed on the training set and the performance was assessed in the testing set. Performance was assessed by discrimination (c-statistic), calibration (slope and intercept), overall performance (Brier-score), and decision curve analysis. RESULTS: The included variables identified using RF algorithms were (1) age, (2) ASA class, (3) functional status, (4) preoperative dementia, (5) preoperative delirium, and (6) preoperative need for mobility-aid. The clinical prediction model reached good discrimination (c-statistic = .79), almost perfect calibration (intercept = −.01, slope = 1.02), and excellent overall model performance (Brier score = .15). The clinical prediction model was deployed as an open-access web-application: https://sorg-apps.shinyapps.io/hipfxdelirium/. DISCUSSION & CONCLUSIONS: We developed a clinical prediction model that shows promise in estimating the risk of postoperative delirium in geriatric hip fracture patients. The clinical prediction model can play a beneficial role in decision-making for preventative measures for patients at risk of developing a delirium. If found to be externally valid, clinicians might use the available web-based application to help incorporate the model into clinical practice to aid decision-making and optimize preoperative prevention efforts. |
---|