Cargando…
Predicting reversed-phase liquid chromatographic retention times of pesticides by deep neural networks
To be able to predict reversed phase liquid chromatographic (RPLC) retention times of contaminants is an asset in order to solve food contamination issues. The development of quantitative structure–retention relationship models (QSRR) requires selection of the best molecular descriptors and machine-...
Autor principal: | Parinet, Julien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671870/ https://www.ncbi.nlm.nih.gov/pubmed/34950792 http://dx.doi.org/10.1016/j.heliyon.2021.e08563 |
Ejemplares similares
-
Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network
por: Xu, Hao, et al.
Publicado: (2023) -
Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases
por: Matyushin, Dmitriy D., et al.
Publicado: (2021) -
Toward the
General Mechanistic Model of Liquid Chromatographic
Retention
por: Kamedulska, Agnieszka, et al.
Publicado: (2022) -
Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals
por: Higel, Fabian, et al.
Publicado: (2013) -
A Reversed Phase High Performance Liquid Chromatographic Method for Determination of Rapamycin
por: Sobhani, Hamideh, et al.
Publicado: (2013)