Cargando…

From microbial community structure to metabolic inference using paprica

Microbial taxonomic marker gene studies using 16S rRNA gene amplicon sequencing provide an understanding of microbial community structure and diversity; however, it can be difficult to infer the functionality of microbes in the ecosystem from these data. Here, we show how to predict metabolism from...

Descripción completa

Detalles Bibliográficos
Autores principales: Erazo, Natalia G., Dutta, Avishek, Bowman, Jeff S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672035/
https://www.ncbi.nlm.nih.gov/pubmed/34950886
http://dx.doi.org/10.1016/j.xpro.2021.101005
_version_ 1784615276369674240
author Erazo, Natalia G.
Dutta, Avishek
Bowman, Jeff S.
author_facet Erazo, Natalia G.
Dutta, Avishek
Bowman, Jeff S.
author_sort Erazo, Natalia G.
collection PubMed
description Microbial taxonomic marker gene studies using 16S rRNA gene amplicon sequencing provide an understanding of microbial community structure and diversity; however, it can be difficult to infer the functionality of microbes in the ecosystem from these data. Here, we show how to predict metabolism from phylogeny using the paprica pipeline. This approach allows resolution at the strain and species level for select regions on the prokaryotic phylogenetic tree and provides an estimate of gene and metabolic pathway abundance. For complete details on the use and execution of this protocol, please refer to Erazo and Bowman (2021).
format Online
Article
Text
id pubmed-8672035
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86720352021-12-22 From microbial community structure to metabolic inference using paprica Erazo, Natalia G. Dutta, Avishek Bowman, Jeff S. STAR Protoc Protocol Microbial taxonomic marker gene studies using 16S rRNA gene amplicon sequencing provide an understanding of microbial community structure and diversity; however, it can be difficult to infer the functionality of microbes in the ecosystem from these data. Here, we show how to predict metabolism from phylogeny using the paprica pipeline. This approach allows resolution at the strain and species level for select regions on the prokaryotic phylogenetic tree and provides an estimate of gene and metabolic pathway abundance. For complete details on the use and execution of this protocol, please refer to Erazo and Bowman (2021). Elsevier 2021-12-11 /pmc/articles/PMC8672035/ /pubmed/34950886 http://dx.doi.org/10.1016/j.xpro.2021.101005 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Erazo, Natalia G.
Dutta, Avishek
Bowman, Jeff S.
From microbial community structure to metabolic inference using paprica
title From microbial community structure to metabolic inference using paprica
title_full From microbial community structure to metabolic inference using paprica
title_fullStr From microbial community structure to metabolic inference using paprica
title_full_unstemmed From microbial community structure to metabolic inference using paprica
title_short From microbial community structure to metabolic inference using paprica
title_sort from microbial community structure to metabolic inference using paprica
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672035/
https://www.ncbi.nlm.nih.gov/pubmed/34950886
http://dx.doi.org/10.1016/j.xpro.2021.101005
work_keys_str_mv AT erazonataliag frommicrobialcommunitystructuretometabolicinferenceusingpaprica
AT duttaavishek frommicrobialcommunitystructuretometabolicinferenceusingpaprica
AT bowmanjeffs frommicrobialcommunitystructuretometabolicinferenceusingpaprica