Cargando…
Discover immunotherapy biomarkers from single-cell cytometry data
Currently, identifying novel biomarkers remains a crucial need for cancer immunotherapy. By leveraging single-cell cytometry data, Greene et al. developed an interpretable machine learning method, FAUST, to discover cell populations associated with clinical outcomes.
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672134/ https://www.ncbi.nlm.nih.gov/pubmed/34950905 http://dx.doi.org/10.1016/j.patter.2021.100384 |
Sumario: | Currently, identifying novel biomarkers remains a crucial need for cancer immunotherapy. By leveraging single-cell cytometry data, Greene et al. developed an interpretable machine learning method, FAUST, to discover cell populations associated with clinical outcomes. |
---|