Cargando…
Discover immunotherapy biomarkers from single-cell cytometry data
Currently, identifying novel biomarkers remains a crucial need for cancer immunotherapy. By leveraging single-cell cytometry data, Greene et al. developed an interpretable machine learning method, FAUST, to discover cell populations associated with clinical outcomes.
Autores principales: | Ru, Beibei, Jiang, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672134/ https://www.ncbi.nlm.nih.gov/pubmed/34950905 http://dx.doi.org/10.1016/j.patter.2021.100384 |
Ejemplares similares
-
T cell biomarkers come to the fore in cancer immunotherapy
por: Sheriff, Lozan, et al.
Publicado: (2023) -
Virus hunters: Discovering the evolutionary origins of SARS-CoV-2
por: Banerjee, Arinjay
Publicado: (2021) -
Data-driven assessment of dimension reduction quality for single-cell omics data
por: Dong, Xiaoru, et al.
Publicado: (2022) -
Illuminating the mechanism of IL-6-mediated immunotherapy resistance
por: Vilgelm, Anna E.
Publicado: (2023) -
Spatially resolved proteomics identify biomarkers from endometrial sentinel lymph nodes
por: Li, Renliang, et al.
Publicado: (2021)