Cargando…
Labels in a haystack: Approaches beyond supervised learning in biomedical applications
Recent advances in biomedical machine learning demonstrate great potential for data-driven techniques in health care and biomedical research. However, this potential has thus far been hampered by both the scarcity of annotated data in the biomedical domain and the diversity of the domain's subf...
Autores principales: | Yakimovich, Artur, Beaugnon, Anaël, Huang, Yi, Ozkirimli, Elif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672145/ https://www.ncbi.nlm.nih.gov/pubmed/34950904 http://dx.doi.org/10.1016/j.patter.2021.100383 |
Ejemplares similares
-
Editorial: Machine Learning Methodologies to Study Molecular Interactions
por: Yakimovich, Artur, et al.
Publicado: (2021) -
A weak-labelling and deep learning approach for in-focus object segmentation in 3D widefield microscopy
por: Li, Rui, et al.
Publicado: (2023) -
Machine Learning and Artificial Intelligence for the Prediction of Host–Pathogen Interactions: A Viral Case
por: Yakimovich, Artur
Publicado: (2021) -
Finding lupus in the ANA haystack
por: Olsen, Nancy J, et al.
Publicado: (2020) -
Infantile hemangioma models: is the needle in a haystack?
por: Kong, Meng, et al.
Publicado: (2023)